
’ Jy I

?

PnPvnI11tinnarv Free Lunches
J

u w v v -*-------

David H. Wolpert, dhw@email . arc. nasa . gov
William G. Macready, wgm@email . arc - nasa. gov

NASA Ames Research Center
Moffett Field, CA, 94035

Abstract-Recent work on the foundations of optimization has
begun to uncover its underlying rich structure. In particular, the
“No Free Lunch” (Nn) theorems lwMg state that any two
algorithms are equivalent when their performance is averaged
across all possible problems. This L&ghts the need for exploit-
ing problemspecifc knowledge to achieve better than random
performance. In this paper we present a general framework
covering most search scenarios. In addition to the optimiza-
tion scenarios addressed in the NFL results, this framework
covers multi-armed bandit problems and evolution of multiple
co-evolving agents. As a particular instance of the latter, it
covers “self-play” problems. In these problems the agents work
together to produce a champion, who then engages one or more
antagonists in a subsequent multi-player game In contrast to
the traditional optimization case where the NFL results hold,
we show that in self-play there are free lunches: in coevolution
some algorithms have better performance than other algorithms,
averaged across all possible problems. However in the typical
coevolutionary scenarios encountered in biology, where there is
no champion, NFL still holds.

I. INTRODUCTION
Optimization algorithms have proven to be valuable in

almost every setting where quantitative €gures of merit are
available. Recently, the mathematical foundations of opti-
mization have begun to be uncovered [KWMOI], LMW961,
[FHSOl], m o l] , [COOl]. One particular result in this work,
the “No Free Lunch” @FL) theorems, establishes the equiva-
lent performance of all optimization algorithms when averaged
across all possible problems [KWMOI]. Numerous works have
extended these early results, and considered their application
to different types of optimization (e.g. to multi-objective op-
timization [CK03]). The web site www. no- free- lunch -
org offers a list of recent references.

However, all previous work has been cast in a limited
manner that does not cover repeated game scenarios where
the fgure of merit can vary based on the response of an-
other player. In particular, the NFL, theorems do not cover
such scenarios. These game-like scenarios are usually called
“coevolutionary” since they involve the behaviors of more than
a single agent or player FWH)].

One important example of coevolution is “self-play”, where
the players cooperate to train one of them as a champion. That
champion is then pitted against an antagonist in a subsequent
multi-player game. The goal is to min that champion to
perform as well as possible in that subsequent game. For a
checkers example see [CF99]. We will refer to all players
other than the one of direct attention as that player’s “op-
ponents”, even when (as in self-play) the players are actually
cooperating. (Sometimes when discussing self-play we will

refer to the specifc opponent to be faced by a champion in a
subsequent game - an opponent not under our control - as
the champion’s “antagonist”.)

Coevolution can also be used for problems that on the
surface appear to have no connection to a game (for an early
application to sorting networks see m1921). Coevolution in
these cases enables escape from poor local optima in favor of
better local optima.

In this paper we frst present a mathematical framework
that covers both traditional optimization and coevolutionary
scenarios. (It also covers other scenarios like multi-armed
bandits.) We then use that framework to explore the differences
between traditional optimization and coevolution. We €nd
dramatic differences between the traditional optimization and
coevolutionary scenarios. In particular, unlike the fundamental
NFL result for traditional optimization, in the self-play domain
there are algorithms which are superior to other algorithms for
all problems. However in the typical coevolutionary scenarios
encountered in biology, where there is no champion, NFL still
holds.

IT. GENERAL FRAMEWORK
In this section we present a general framework, and illustrate

it on two examples. Despite its substantially greater breadth
of applicability, the formal structure of this framwork is only
a slight extension of that used in [p\Ip1197].

A. F o m l framework specifcation
Say we have two spaces, X and 2. To guide the intuition,

a typical scenario might have x E X be the joint strategy
followed by our player(s), and z E 2 be the probability
distribution over some space of possible rewarddpayoffs to
the champion, or over possible fgures of merit., or some such.

In addition to X and 2, we also have a &ness function

f : X - Z . (1)

In the example where z is a probability distribution over
rewards, f can be viewed as the specifcation of an x-
conditioned probability distribution of rewards.

We have a total of m time-steps, and represent the infor-
mation generated through those time-steps as

d, = (4LG) = ({W)IZ“=,, {d”(t)),“=,).

Each dz(t) is a particular x E X. Each d”(t) is a (perhaps
stochastic) function of f(dx(t‘)). For example, say z’s -
values o f f (x) - are probability distributions over reward val-
ues. Then d”(t) could consist of the full distribution f (d z (t)) .

Alternatively, it could consist of a moment of that distribution,
or even a random sample of it. In general, we allow the
function specifying d z (t) to vary with t , although that freedom
will not be exploited here. As shorthand we will write d (t) to
mean the pair (d" (t) , d" (t)) .

A search algorithm a is an initial distribution P l (d " (l)) ,
together with a set of m - 1 separate conditional distributions
P,(d"(t) I d t - l) , t = 2 , . . . m. Such an algorithm speciEes
what IC to choose, based on the information uncovered so
far, for any time-step t. Finally, we have a vector-valued cost
function, C(d,, f) which we use to assess the performance
of the algorithm. Often our goal is to End the a that will
maximize E(C) , for a particular choice of how to form the
d" (t) ' s .

The NFL theorems concern averages over all f of quantities
involving C. For those theorems to hold, for f-averages of
C to be independent of the search algorithm, it is crucial
that C does not depend on f . (The framework in [Wh497]
d d n e s cost f~octisns 2s :ea!-vakied fiiiibiivIis of d,.j -when
that independence is relaxed, the NFL theorems need not hold.
Such relaxation occurs in self-play, for example, and is how
one can have free lunches in self-play. This papers explores
this phenomenon.

B. Examples of the framework
a) Example 1: One example of this framework is the

scenario considered in the NFL theorems. There each z is a
probability distribution over a space Y R. For convenience
we take X and Y countable. Each d f (t) is a sample of the
associated function z (t) = f (d " (t)) . The search algorithm is
constrained so that

(3)

i.e., so that the search never revisits points already sampled.'
Finally, C(d,, f) is allowed to be any scalar-valued function
that depends on d, exclusively.

The NFL theorems apply to any scenario meeting these
specifcations.

b) Example 2: Another example is the multi-arm bandit
problem introduced for optimization by Holland [Ho175] and
thoroughly analyzed in [MW98]. The scenario for that problem
is identical to that for the NFL results, except that there are
no constraints on the search algorithm, Y = R and every z is
a Gaussian. The fact that revisits are allowed means that NFL
need not apply.

c) Example 3: Self-play is identical to the NFL scenario
except that C depends on f . This dependence is based on a
function A(&) mapping d, to a subset of X . Intuitively,
A specifes the details of the champion, based on the m
repeated games and on the possible responses to the champion
of an antagonist in a subsequent game. C is then based on
this specifcation of the champion. Formally, it uses A to

P,(d"(t) = x I d t -1) = 0 vx E d;-l,

'This requirement is just to "normalize" algorithms. In general. an algo-
rithm that sometimes revisits points can outperform one that never does. Our
requirement simply says that we're purely focusing on how well the algorithms
choose new points, not how smart they are about whether to Enish the search
at t = m by sampling a new point or by returning to one already visited. See
IwM971.

u
determine the quality of the search algorithm that generated
d, as follows:

(4)

where IEf(.) is the expected value of the distribution of payoffs

Intuitively, this measure is the worst possible payoff to the
champion.

To see in more detail how this describes self-play, assume
two players, with strategy spaces X1 and X 2 , X1 being the
strategy space of our champion. Take IC to be the joint strategy
of our players in any particular game, i.e., IC E X = X1 x Xz.
So d& specifes the m strategies followed by our champion (as
well as that of the other player) during the m training games.
dk is the associated set of rewards to our champion, i.e., each
d" (t) is a sample of the distribution f (d" (t)) .

Let 2 1 E X1 be the strategy our champion elects to follow
bawd nn t h ~ trriining dzta. Note :hat that b'uategy cai be
represented as the set of all joint-strategies x whose Erst
component is z l . We adopt this representation, and write the
strategy chosen by our champion - the set of all x's consistent
with the champion's choice of strategy x1 - as A(&) C X .

Say the antagonist our champion will now face is able
to choose the worst possible element of X2 (as far as ex-
pected reward to our champion is concerned), given that our
champion chooses strategy A(&). If the antagonist does this
the expected reward to our champion is given by C(dm,f)
as deEned above. Obvious variants of this setup replace the
worst-case nature of C with some alternative, have A be
stochastic, etc. Whatever variant we choose, typically our
goal in self-play is to choose a andor A so as to maximize
E(C), the expectation being over all possible d,. The fact
that C depends on f means that NFL need not apply. The
mathematical structure that replaces NFL is explored in the
following sections of this paper.

d) Example 4: The basic description of self-play in the
introduction looks like a special case of the more general
biological coevolution scenario. However in terms of our
framework they are quite different.

In the general coevolution scenario there are a total of N
agents (or players, or species', or genes, etc). Their strategy
spaces are written X , , as in self-play. Now though X is
extended beyond the current joint strategy, to include the
previous joint "population frequency" value. Formally, we
write

(5)

and interpret each u, E R as agent 2's previous population
frequency. As explained below, the reason for this extension
of X is so that a can give the sequence of joint population
frequencies that accompanies the sequence of joint strategies.

In the general coevolution scenario each 2 is a probability
distribution over the possible current population frequencies
of the agents. So given our defnition of X , we interpret f as
a map talung the previous joint population frequency, together
with the current joint strategy of the agents, into a probability
distribution over the possible current joint population frequen-
cies of the agents.

f(x) obtained from 2, c,,y P f (Y I IC) = c,,y ?Af(z)I(?/).

x = (x1,ul) x ." x (X N I ~ N) ,

.A< an examole, in evolutionary game theory, the joint strat- g q e s between an agent and its opponents, the agent enters
egy of the agents at any given t determines the cnange ill each a c s q x t i t k ~ Performance of the agent is measured with a
one’s population frequency in that time-step. Accordingly, in payoff function. As shorthand, the (here deterministic) payon
the replicator dynamics of evolutionary game theory, f takes a function when the zth agent plays move (strategy) gi and 2’s
joint strategy 2 1 x . . . XN and the values of all agents’ previous opponent plays Ti is written as f i (g i , Ti). If we indicate the
population frequencies, and based on that determines the new joint move of i and its opponent as xi = (gi, Ti) we can write
value of each agent’s population frequency. the payoff to agent i as fi(~i). In the following we make no

As before, each d”(t) contains the information coming out assumption about the structure of moves except that they are
of f (d”(t)) . Here that information is the set of current popula- fnite. a: might represent a sequence of plays representing an
tion frequencies. The search algorithm a now plays two roles. entire game of checkers and Z might represent a complete
One of these is to directly incorporate those current population set of opponent responses to each play. The payoff function
frequencies into the {ui} components of d”(t+ 1). The other f(g,Z) might then represent the outcome of the game as +l
is, as before, to determine the joint strategy [XI,. . . , ZN] for a win for i, 0 for a draw, and -1 for a loss. Illegal joint

- for time--t + 1. As in self-play, this strategy of each agent moves can be eliminated by appropriately limiting the space of
z is given by a (potentially stochastic and/or time-varying) moves and opponent responses in order to satisfy the rules of
function ai. An application of a is given by the simultaneous the game. In other applications, g might represent an algorithm
operation of all those N distinct ai on a common 4, as well to sort a list and Z a mutable set of lists to be sorted. The
as the transfer of the joint population frequency from d”(t) , payoff would then rc9ect the ability of the algorithm to sort
to produce dz (t + 1). those lists in Z.

Note that the choice of joint strategy given by a may depend We defne the payoff for agent i playing move 3 inde-
on the previous time-step’s frequencies. As an example, this pendent of an opponent’s reply, g(g i) , as the least payoff
corresponds to sexual reproduction in which mating choices over all possible opponent responses (a minimax criteria):
are random.2 However in the simplest version of evolutionary gi(gi) minz, fi(gi,Ti). With this criterion, the best move
game theory, the joint strategy is actually constant in time, an agent can make is that move which maximizes gi so that
with all the dynamics occuring via frequency updating in f . its performance in competition (over all possible opponents)
If the agents are identihd with distinct genomes, then in L!s will be as good as possible. We are not interested in search
version reproduction is parthenogentic. strategies just across i’s possible moves, but more generally

Finally, C is now a vector with N components, each across all joint moves of z and its opponents. (Note that
component j only depending on the associated & (j) . In whether that opponent varies or not is irrelevant, since we
general in biological coevolution scenarios (e.g., evolutionary are setting its moves.) The ultimate goal is to maximize i’s
game theory), there is no notion of a champion being produced minimax performance gi .
by the search and subsequently pitted against an antagonist in We make one important observation. In general, using a
a “bake-off‘’. Accordingly, there is no particular si@ance random pairing strategy in the training phase will not result in
to results for C’s that depend on f. a training set that can be used to guarantee that any particular

This means that so long as we make the approximation, move in the competition is better than the worst possible move.
reasonable in real biological systems, that x’s are never The only way to ensure an outcome guaranteed to be better
revisited, all of the requirements of Ex. 1 are met, This means than the worst possible is to exhaustively explore all possible
that MFL applies. So in particular, say we restrict attention to responses to move g, and then determine that the worst value
the particular kinds of a.’s of evolutionary game theory. Then of fi for all such joint moves is better than the worst value
any two choices of a - any two sets of strategy-making rules for some other move, d . To do this certainly requires that
{ai} - perfom just as well as one another, averaged over all m is greater than the total number of possible moves by
f’s. More generally, we can consider other kinds of a as well, the opponent but even for very large m unless all possible
and the result still holds. opponent responses have been explored we can not make any

such guarantees.
Pursuing this observation further, consider the situation

~n example 3 of section D-B we introduced self-play model. where we h o w through exhaustive sampling of
In the remainder of this paper we show how free lunches may Opponent that the worst possible Payoff for some
arise in this seaing, and quantify the a priori differences be- move 3: is g(g) and that another joint move x’ = (g’,Y) with
tween certain self-play algorithms. For expository simplicity, iT # g’ results in a payoff f(x’> < g(d- In this there
we modify the ddnitions introduced in the framework, is no need to explore other opponent responses to g’ since it
to tailor them for self-play. must be that g(g’) < g(g), i.e. g’ is minimax inferior to g.

In self-play agents (or game strategies) are paired against Thus, considering strategies for searching across the space of
each other in a (perhaps stochastically formed) sequence to Joint moves xi, any algorithm that avoids searching regions
generate a set of 2 - p l a y ~ games. After m distinct training which are known to be minimax inferior (as above) will be

more effcient than one which searches these regions (e.g.
20bvious ehbOdOnS Of the framework OW 2 to include relative rewards random search). This applies for all Si and SO the smarter

from the preceding round, as well as frequencies. This allows mate selection
to be based on current differential .€mess, as well as overall frequency in the algorithm have an performance than the

111. APPLICATION TO SELF-PLAY

population. dumb algotithm. Very roughly speaking, this result avoids NFL

implications because uniformly varying over all gi does not
uniformly vary over all possible fi, which are the functions
that ultimately determines performance.

In the following sections we explore this observation further.

A. DeZnitions

As much as possible we follow the notation of [WM97]
extending it where necessary. That paper should be consulted
as motivation for the analysis framework we employ. Without
loss of generality we now consider two player games, and
leave the agent index i implicit. If there are I moves available
to an agent, we label these by c E X = [l, . . ‘ , I] . For each
such move we assume the opponent may choose from one of
t(g) possible moves forming the space y(g). For simplicity
we will take X (g) to be independent of :. Consequently,
the size of the joint move space is 1x1 = Cb=,t(g). If the
training period consists of m distinct joint moves, even with
m as ! q e 2s IX; - i, wc cannot guarantee that the agent
won’t choose the worst possible move in the competition as
the worst possible move could be the opponent response that
was left unexplored for each of the 1 possible moves.

In [WM97] a population is a sample of distinct points from
the input space X and their corresponding ftness values.
In this coevolutionary context the notion of a population
of sampled confgurations needs to be extended to include
opponent responses. For simplicity we assume that ftness
payoffs are a deterministic function of joint moves. Thus,
rather than the more general output space 2, we assume payoff
values lie in a €nite totally ordered space. Consequently, the
ftness function is the mapping f : X H Y where X = E x x
is the space of joint moves. As in the general framework a
population of size m is represented as

where d & (i) = {dk(i), d z (z) } and dY,(i) = f(dk(z), d z (i))
and i E [l , . . . ,m] labels the samples taken. In the above
defnition d & (i) is the ith move made by the agent, d z (i) is
the opponent response, and dk(i) is the corresponding payoff.
As usual we assume that no joint confgurations are revisited.
A particular coevolutionary optimization task is specifed by
defning the payoff function that is to be extrernized. As dis-
cussed in [WM97] a class of problems is defned by specifying
a probability density P (f) over the space of possible payoff
functions. As long as both X and Y are fnite (as they are in
any computer implementation) this is straightforward.

In addition to this extended notion of a population, there
is an additional consideration in the coevolutionary setting,
namely the decision of what move to make in the competition
based upon the results of the training population. Formally,
we encapsulate the process of making this decision as A.4 A
consists of a set of distributions (one for each m since we
would like A to select a move regardless of the size of the

3Note that the space of opponent moves varies with c. This is the typical
situation in applications to games with complex rules (e.g. checkers).

4The notation A is meant to suggest that, unlike the A(&) function
introduced earlier, A defnes only the champions move, and not the possible
responses to this move.

training set) of the form P (2 E ; d,). If A deterministically
returns a single move, we indicate the mapping from training
population to move as A(&). TO summarize, the defnition
of search method is extended for self-play to include:

A search rule a which determines the manner in which
a population is expanded during training and is formally
given by the set of distributions {Pt(d”(t) 1 dt--i)}21.
This corresponds exactly to the defnition of a search
algorithm in [WM97] used in non-coevolutionary opti-
mization.
A move-choosing rule A mapping probabilistically or
deterministically to the single move used in the compe-
tition. We write A explicitly as the probability density
- A(g I d,) where E X. For deterministic A we write
the density as A(g I d,) = b(: - A(&)).

The tuple (.,A) is called a search process (as opposed to a
search algorithm in [WM97]).

Tine search process seeks a strategy that will perform
well in competition. If A is deterministic the natural mea-
sure of the performance of search process (a,A) obtained
during training is C = minzE[l,m] f (+ 4 (d m) , dz(z)) . (If
- A is not deterministic then we use the weighted average

a particular f are those which maximize C.
The traditional version of NFL (for traditional optimiza-

tion) defnes the performance differently since there is no
opponent. In the simplest case the performance of a (recall
that there is no choosing algorithm) might be measured as
C = rna~,~[~,,] d L . One traditional NFL result states that
the average performance of any pair of algorithms is identical,
or formally, Cf P(C 1 f , m , a) is independent of a5 A
natural extension of this previous results considers a non-
uniform average over ftness functions. In this case the quantity
of interest is C f P (C I f , m , a) P (f) where P (f) weights
different ftness functions. NFL results can be proven for other
non-uniform P (f) [SVWOl].

A result akin to this one in the self-play setting would state
that the unform average Cf P(C I f, m, a, A) is independent
of a and A. However, as we have informally seen, such a
result cannot hold in general since a search process with an
a that exhausts an opponent’s repertoire of moves has better
guarantees than other search processes. A formal proof of this
statement is presented in the next section.

E Z E p i n 2 E [l , ,] f(z, d%))A(: I dm) .) The best (%A) for

IV. AN INTUITIVE EXAMPLE

Before proving the existence of free lunches we give a
motivating example to both illustrate the dehitions made in
the above section and to show why we might expect free
lunches to exist. Consider the concrete case where the player
has two possible moves, i.e. X = {1,2}, the opponent has two
responses for each of these moves, i.e. x = { 1,2}, and there
are only two possible payoff values, i.e. Y = {1/2,1}. In this
simple case there are 16 possible functions and these are listed
in Table I. We can see that in this simple example the minimax

’Actually far more can be said, and the reader is encouraged to consult
W 9 7] for details.

5

(%z)
(1,:)
(1,2)
(2 , l)
(2,2)

1
2

f1 f2 f 3 f4 f5 f6 f7 f8 f9 f10 fll flZ f13 f14 f15 fl6
!,E ! I f 2 1 112 I In 1 1 R 1 112 1 1 0 1 1R 1
IR IR 1 1 IR ID 1 I ii; ;R ! 1 IR 1 R 1 1
1R 1R 112 In 1 1 1 1 1 R 1R 1R 1R 1 1 1 1
1 n I f 2 112 ID 1R In 1R IC! 1 1 1 1 1 1 1 1

112 112 In 1 In 112 iR 1 112 1R 112 1 ID 1R 112 1
112 , 1 R 1R 112 112 in 112 1/2 1R 112 1R 112 1 1 1 1

91 92 9 3 94 95 96 g7 98 99 910 911 912 913 914 915 916

EXHAUSTIVE ENUMERATION OF ALL POSSIBLE FUNCTIONS fk, F) AND gk) = minFf(g,z) FOR x = {1,2}, x = {1,2}, AND Y = {1/2,1}. THE
PAYOFF FUNCTIONS LABELED IN BOLD ARE THOSE CONSISTENT WITH THE POPULATION dz = {(1,2; 1/2), (2,2; 1)).

criteria gives a very biased distribution over possible perfor-
mance measures: 9/16 of the functions have g = [1/2 1/21,
3/16 have g = 1/2 11, 3/16 have g = [l 1/2 , and 1/16
have g = [l 1 I where g = [g(g = 1) g(: = 2) 1 .

If we consider a particular population, say d2 =
{(1,2; 1/2), (2,2; I)}, the payoff functions that are consistent
with this population are fg, f10, fi3, fl4 and the corres ond
ing distribution over g functions is 1/2[1/2 1/21 and

1/2 [1/2 1IT. Given the fact that any population will give a
biased sample over g functions it may not surprising that there
are free lunches. We might expect that an algorithm which is
able to exploit this biased sample would perform uniformly
better than another algorithm which does not exploit the biased
sample of gs. In the next section we prove the existence of
free lunches by constructing such a pair of algorithms.

P -

v. PROOF OF FREE LUNCHES

In this section a proof is presented that there are free
lunches for self-play by constructing a pair of search processes
one of which explicitly has performance equal to or better
than the other for all possible payoff functions f. As in
earlier NFT work we assume that both 1x1 and IYI are
fnite.6 For convenience, and with no loss in generality, we
normalize the possible Y values so that they are equal to

The pair of processes we construct use the same search
rule a (it is not important in the present context what a
is) but different deterministic move choosing rules A. In
both cases a Bayesian estimate based on uniform P (f) and
the d, at hand is made of the expected value of g(g) =
min~f(g, 5) for each I. Since we are striving to maximize
the worst possible payoff from f. the optimal search process
selects the move which maximizes this expected value while
the worst process selects the move which minimizes this
value. More formally, if E(C I d,, a, A) differs for the two
choices of 4, always being higher for one of them, then
E(C I m, a, A) = Ea, P (d , 1 a)E(C I d,,A) differs for
the two A. In turn, E(C I m,a,A) = Cf,& x P(C 1

uniform prior P(f) . Since this differs for the two 4, so must

Let j (g) be a random variable representing the value of
g(g) conditioned on d, and g, i.e. it equals the worst possible

l/IYl, 2/IYI,. . . ,1.

f, m, a,A) x P(f)l Cf,CP x P(C I f , m, a,A)1 for the

Cf P(C I f, m, a,A).

that 1x1 = E, TO. -

payoff (to the agent) after the agent makes move : and
the opponent replies. In the example of section IV we have
Ej(1) = 1/2 and Ej(2) = 3/4

To determine the expected value of j (g) we need to know

P (f) . Of the entire population d, only the subset sampled
at g is relevant. We assume that there are k(g ,d ,) 5 m
such value^.^ Since we are concerned with the worst possible
opponent response let r(:,d,) be the minimal Y value
obtained over the k(:,d,) responses to g, i.e. ~(g,d,) =
min,,c d K (g , Z). Since payoff values are normalized to lie
between 0 and 1, 0 < ~(g,d,) 5 1. Given k(:,dm) and
~ (g , L), P (j I g, d,) is independent of a: and d, and so we
indicate the desired probability as ~ + (j) .

In appendix A we derive the probability Tk,r in the case
where all Y values are distinct (we do so because this results
in a particularly simple expression for the expected value of j)
and in the case where Y values are not forced to be distinct.
From these densities we the expected value of j(:) can be
determined. In the case where Y values are not forced to be
distinct there is no closed form for the expectation. However,
in the continuum limit where IYI + 00 we €nd (see appendix
B)

P(j(:) I z, 4 n) = Cf P (j (z) I z, dm, f)P(f) for unifcml

where we have explicitly noted that both k and r depend
both on the move g as well as the training population d,.
As shorthand we d d n e C,(g)

The best move given the training population is the deter-
ministic choice Lt(d,) = arg max, Cm(g) and the worst
last move is &mt(dm) = arg min, C,(g). ~n the example
of section IV with the population ofsize 2, &(&) = 2 and
AW0rst(d2) = 1-

As long as Cm(g) is not constant (which will usually be the
case since the T values will differ) (a,&) and (a,-&m)
will differ, and the expected performance of Lt will be
superior. This proves that the expected performance over all
payoff functions of algorithm (a,&) is greater than that of

E(j(g) I g,d,).

algorithm (a, AwOIst).

VI. OTHER FREE LUNCHES
We have shown the existence of free lunches for self-play

by constructing a pair of algorithms with the same search rule

course, we must also have k& k) 5 T(zJ for pop~lations 6.

a but different move-choosing rules A and showing different
performance. Unsurprisingly, we can also construct algorithms
with different expected performance but having the same
move-choosing rule and different search rules. In this section
we provide a simple example of such a pair of algorithms.
This should help demonstrate that free lunches are a rather
common occurrence in self-play settings.

Take the simple case where all 1 agent moves offer the
same possible number of opponent responses, say 1. Consider
a search rule that explores m = 1 distinct joint samples. Agent
moves are labeled by g E { 1 , . . .I} and opponent responses
are labeled by T E { 1, . . 7). For simplicity we assume that

Search rule a1 explores the joint moves (1, l), . . . , (1, rn)
while search rule a2 explores the joint moves
(1, l), . . . , (rn, l), i.e. a1 exhausts opponent responses
to g = 1 while a2 only samples 1 opponent response to each
of it's rn possible moves. For the move choosing rule we
app!y t!e Bayes optimal d e used eariier: select the move z
that has the highest expected g(:) value when averaged over
payoff functions consistent with the observed population.

To start we determine the expected performance of an
algorithm which does not have the beneft of knowing any
opponent responses. In this case we average the performance,
g(:) for any element g, over all JYli' functions. We note that
for any given player move g the IY 11' possible function values
at the joint moves (g, -) are replicated (Y(i'/(YJT = (YJt(l-l)
times. The number of times that a g(g) value of 1 - illy1 is
attained in the Erst lYlt distinct values is (i + 1)j - i'. Thus
the average g(g) value, which we denote (g), is

-
! = I .

-
where nr(i) = [(Z+l) /~Y~] ' - [i/lYJ]'. This averageis value
is obtained for all moves g. In the continuum limit where
JYJ -+ 00 the expected value of g is simply

(9) = 1 / (1+ 1).
This serves as a baseline for comparison; any algorithm which
samples some opponent responses has to do better than this.

Next we consider the algorithm a1 which exhaustively ex-
plores all opponent responses to g = 1. There are IY Is possible
populations that this algorithm might see. For each of these
populations, d,, we need to determine g(l) and the average g
values for each of the other moves z # 1. This average is taken
over the IY/'(i-') functions consistent with d,. Of course
we have g(l) = mind& and the expected g(2) value for
- x # 1 are all equal to (9) above. Since the move choosing rule
maximizes the expected value of g the expected performance
of a1 for this population is max(mindL, (9)). Averaged over
all functions (populations) the expected performance of al is

where the sum is over all (Y (I possible populations. Converting
the sum over all populations into a sum over the minimum

value of the population we &nd

If we defnk' i, = [IYI(l - (g))] then we obtain

In the continuum limit we have

(9) 1 = (1 - (g))-@ + (9) (1 - (1 - (g))f) i + i

where we have recalled the expected value (9) = 1/(1 + 1).
We note that as 7 4 00 the performance of algorithm a1 is
(1 + e-') times that of (9).

The analysis of algorithm a2 is slightly more complex. In
this case each element of the population occurs at a different
- x. For any given observed PO dation the optimal move for
the player is E* = arg m a x d g (i.e. the move corresponding
to the largest payoff observed in the population). With this
insight, we observe that when summing over all functions,
there are JY17-1 possible completions to m u d % for the
remaining i - 1 unobserved responses to $. We must take
the minimum over these possible completions to determine the
expected value of g. Thus the expected payoff for algorithm
a2 when averaging over all functions (populations) is

We proceed in the same fashion as above by defning' i d

(YI(1- maxdk) (which depends on d L) so that

The sum over populations is now tackled by converting it to a
sum over the (Y (possible values of m a d % . The - number of -
sequences of length i having maximum value j is j ' - (j - 1)'.
Moreover, if m a d & = j/lYI then i d = IYJ - j and SO

'There is no need to take the ceiling since id is automatically an integer.

The continuum limit in this case is found as respectively.
1 ‘2. szz-ming 1 2 above expressions over f we r e p c e the

‘-I -t (1-1) l-2 (1-Y)Yi-2]Y~-1sum over f with a sum over jl, j5, kl, k2, 1 and m using
the appropriate multiplicities. The resulting sums are then

dy, y;-~(l-y yeaverted to integrals in the continuum limit and evaluated
by Monte Carlo. Details are presented in Appendix D.

1 - 1 - 1 -

3 -I
= ~ (1 + 1, i) + i/1- B(1, 1)

where B(z,y) is the beta function ddned by B(z,y) =
r (s) r (y) / r (s + y). For large i the Beta functions almost
cancel and the expected performance for a2 varies as l/a
which is only slightly better than the performance of the
algorithm which does not have access to any training data

In Figure 1 we plot the expected performance of a1 and
a2 as a function of i (recall that m = I = 1). Algorithm al
outperforms algorithm u2 on average for

Though a1 outperforms a2 on average, it is interest-
ing to determine the fraction of functions where a1 will
perform no worse than a2. This fraction is given by

formance of algorithm a1 on payoff function f , perf2(f) is the
performance of algorithm a2 on the same f, and 8 is a step
function ddned as O(s) = 1 ifs 2 0 and e(s) = 0 otherwise.
The Bayes optimal payoff for al for any given payoff function
f is9

values of i.

IYI-Li& O(perf’(f) - perf2(f)) where perfl(f) is the per-

minFf(1,C) if minTf(1,:) > (9)
perfl(f) = minzf(2,Z) otherwise {

Similarly, the performance of algorithm a2 is given by

perf2(f) = mjnf(d ,Z) where gz = arg max@$.
X - X

To determine the performance of the algorithms for any given
f we divide f into its relevant and irrelevant components as
follows:

31 - - - f(1, l) ,
IYI - IYI 32 E f (2 , l)

1

m -

- = m={f(rc, 1)l: # 1721, (YI - z

lyl = *{f(d,z)ld # L 2 , Z # 11
In the ddnition of m, g; is the move chosen by a2 if a2

doesn’t choose move & = 1 or 2, the specifc value of g; is
irrelevant. Given these defnitions, the performance of the two
algorithms are

rnin(jl,kl) if min(j1,kl) > IYl(9)
min(j2 , k2) otherwise

d (j l , k1) if m=(j1,j2, I) = jl
m(j2, k2) if m=(jl,j2, I) = j 2

and

min(Z, m) otherwise

9We have arbitmrily assumed that a1 will select move 2 if it does not select
more 1. This choice has no bearing on the result.

The results are shown in Figure 2 which plots the fraction
of functions for which perfl 2 perf,. This plot was generated
using lo7 Monte Carlo samples per 1 value.

A. Better Training Algorirhms

In the previous sections we constructed Bayes optimal
algorithms in limited settings by using specially constructed
deterministic rules a and A. This alone is suffcient to demon-
strate the availability of free lunches in self-play contexts.
However, we can build on these insights to construct even
better (and even worse) algorithms by also determining (at
least partially) the Bayes-optimal search rule, (a ,A) , which
builds out the training set, and selects the champion strategy.
That analysis would parallel the approach taken in m 9 8]
used to study bandit problems. and would further increase the
performance gap between the (best, worst) pair of algorithms.

VII. THE ROLE OF OPPONENT “INTELLIGENCE”

All results thus far have been driven by measuring perfor-
mance based on g(s) = arg minFf(:,:). This is a very
pessimistic measure as it assumes that the agent’s opponent
is omniscient and will make the move most detrimental to the
agent. If the opponent is not omniscient and can not determine

of free lunches?
E* - - arg minzf(g,T), how does this affect the availability

Perhaps the simplest way to quantify the intelligence of the
opponent is through the fraction, cy, of payoff values known
to the opponent. The opponent will use these known values to
estimate its optimal move C’. We have already examined the
(Y = 1 limit corresponding to maximal intelligence where the
opponent can always determine Z* and we have free lunches.
In the cy = 0 limit the opponent can only make random replies
so that the expected performance of the agent will be the
average over the opponents possible responses.

One way to approach this problem is to build the opponent’s
bounded intelligence into the agent’s payoff function g and
proceed as we did in the omniscient case. If 1x1 is the number
of joint moves, then there are (a?,) possible subsets of joint
moves of size CUJXI.’~ We indicate the list of possible subsets
as S(X,cylXI), and a particular subset by S, E S. For this
particular subset :* is estimated by selecting the best response
out of the S, payoff values known to the opponent. Of course,
it may be the case that there are no samples in Si having the
agent’s move a: and in that case the opponent can only select
a random response. In this case the agent will on average
obtain the average payoff E, f(g, Z)/Z(g). If we assume that
all subsets of size alXl are equally likely, then the agent’s

lowe assume that a is an integral multiple of l/[XI.

4
8

0 ' I
0 10 15 20 25 30

1

Fig. 1. Expected performance of algorithm a1 (indicated as (g)1) which exhaustively enumerates the opponents response to a particular move, and algorithm
a2 (indicated as (9) ~) which samples only 1 opponent response to each move, For comparison we also plot (9) which is the expected performance of an
algorithm which does no sampling of opponent responses.

0.74

0.72 - f

0.7 -
a
I

go.- -
a
m
v

0.66 -

0.64 -

0.62
0 5 10 15 20 2 5 30 35 40 45

1
I

Fig. 2.
each value of 5.

The fraction of functions in the continuum limit where perfl 2 perf2 The fgure was generated with IO7 Monte Carlo samples of the integrand for

payoff function against a boundedly intelligent opponent is
given by

This generalization reduces to the previously assumed g in the
maximally intelligent a = 1 case. In Table II the functions
g'/4, g2/4, g3/4, and g4l4 are listed for the example of
section IV. As expected the payoff to the agent increases
with decreasing Q: (a less intelligent opponent), However, we
also observe that for the same population d2 the average

[g(: = 1) g(g = a)] values are [5/8 7/81 for a = 1/4,
[29/48 41/48IT for Q: = 2/4, [9/16 13/16IT for a =
3/4, and [1/2 3/41T for a = 4/4. For this population, d:!
Etness function (a , Ahst) continues to beat (a , A,o,,t) and by
the same amount independent of cy.

VIII. CONCLUSIONS

We have introduced a general framework for analyzing
NFL issues in a variety of contexts. When applied to self-
play we have proven the existence of pairs of algorithms one
of which is superior to another for all possible joint payoff

*
9

TABLE IJ

INTELLIGENCE PARAMETER a = 114, a = 214, a = 314, AND Q = 414. SEE TABLE I FOR THE CORRESPONDING f FUNCTIONS AND FOR THE a = 1 g

EXHAUSTIVE ENUMERATION OF ALL 16 POSSIBLE AGENT PAYOFFS, gQ(z = l) , g a (g = 2). FOR BOUNDEDLY INTELLIGENT OPPONENTS HAVING

FUNCTION. THE PAYOFF FUNCTIONS LABELED IN BOLD ARE THOSE CONSISTENT WITH THE POPULATION d2 = {(1,2; 1/2), (2,2; 1)).

functions f. This result stands in marked contrast to similar
analyses for optimization in non-self-play settjngs. Basically,
the result arises because under a minimax criteria the sum
over all payoff functions f is not equivalent to a sum over
all functions minzf(-,T). We have shown that for simple
algorithms we can calculate expected performance over all
possible payoff functions and in some cases determine the
fraction of functions where one algorithm outperforms another.
On the other hand, we have also shown that for the more
general biological coevolutionary settings, where there is no
sense of a “champion” like there is in self-play, NFL still
applies

Clearly we have only scratched the surface of an analysis of
coevolutionary and self-play optimization. Many of the same
questions posed in the traditional optimization setting can be
asked in this more general setting. Such endeavors may be
particularly rewarding at this time given the current interest in
the use of game theory and self-play for multi-agent systems
[PWO2]~

[MW96]

w 9 8]

W. G. Macready and D. H. Wolpen What makes an optimization
problem? Complexity. 540-46, 1996.
W. G. Macready and D. H. Wolpert. Bandit problems &d the
exploratiodexploitation tradeoff. IEEE Trans. EvoL Comp., 2:2-
22, 1998.
S. Parsons and M. Wooidridge. Game theory and decision theory
in multi-agent systems. Aufonomour Agents and Multi-Agem
System, 5(3):243-254, Sept 2002.

[SVWOl] C. Schumacher, M. D. Vose, and L. D. Whitley. The no free
lunch and problem description length. In Lee Spector, Erik D.
Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mit-
suo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H.
Garzon, and Edmund Burke, editors. Proceedings of the Genetic
and E V O ~ U ~ ~ O M I ~ Computation Conference (GECC0-2001), pages
565-570, San Francisco, California, USA, 7-11 2001. Morgan
Kaufmann.
D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. IEEE Trans. Evol. Comp., 1:67-83, 1997.

IpW02J

w 9 7 1

APPENDIX

A. Determination of xk,,(g): distinct Y

To determine ~ k , ~ (i j) we Erst consider the case where all
Y values are distinct and then consider the possibility of

case in the main text we derive the distinct Y case here because
we can obtain a closed form expression for the probability and
because it serves as simpler introduction to the case of non-
distinct Y.

To derive the result we generalize from a concrete example.
Consider the case where IYI = 10, l(c) = 5, and k = 3.

REFERENCES
K. Chellapilla and D. B. Fogel. Evolution, neural networks, values. Though we Only present the non-distinct
games, and intelligence. Proc. IEEE, 87:1471-1498, 1999.
D. w. and J. D. Knowles. No free lunch and free
leftovers theorems for multiobjective optimisation problems. In
second ~ ~ ~ ~ . ~ d Conference on E ~ ~ ~ ~ ~ ~ ~ , , ,
Oprimizarion, pages 327-341. Springer LNCS, 327-341 2003.

and Oppacher. what we learn from
no free lunch? a frst attempt to characterize the concept of a
searchable function. ~n Smtor, E& D. G&, Annie
WU, W.B. Langdon, Hans-Michael Voigt, h4itsuo Gen, Sandip Sen,
Marc0 Dorigo, Shahram Pezcshk, Max H Garzon, and Edmund
Burke, editors, Proceedings of the Genetic and Evohtiona~y
Compiuation Conference (GECCO-2001). pages 1219-1226, San
Francisco, California, USA, 7-1 1 July 2001. Morgan Kaufmann.
A. Franz, K H. Hoffmann, and P. Salamon. Best possible strategy
for fnding ground states. Phys. Rev. Len., 865219 - 5222,2001.
S. G. Ficici and J. B. Pollack. A game-tbretic approach to
the simple coevolutionary algorithm. In M. Schoenauer, K Deb,
G. Rudolph, X. Yao, E. Luaon, and H-P.1 Schwefel J. J. Merelo,
editors, Parallel Problem Solvingfrom Naiure VI. Springer Verlag,
September 2000.
W. D. Hillis. Coevolving parasites i m p m simulated evolution
as an optimization procedure. In C. G. Langton, C.Taylor, J. D.
Farmer, and S. Rasmussen, editors. A d c i a l Life 11, pages 313-
322. Addison Wesley, 1992.
J. H. Holland Adaptation in Nah~ral and Artifcial Systems. ha
press, Cambridge, MA. 1975.

A particular instantiation is presented in Figure 3. In this
case T = 4/10 which is not the true minimum for responses
to g. The probability that T is the true minimum is simply
k / l (c) . If T is not the true minimum then P(ijld,) is found
as follows. P(ij = l / lOl&,) is the fraction of functions
containing Y values at {1/10}ud$.11 Since the total number
of possibilities consistent with the data is (!:I:) this fraction

because we laow
that the function can not contain a sample having Etness less

IYI-k-1 JYI-k -
is (i (+ k - I) / (j (d - k) - (IM - k)/(IyI -

than 2/10.

similarly,

~ (i j = 2/101d,) is (i k l - k - l) / (~ ~ ~ ~) IYI-k-2

Thus, in the general case, we have

Christian Igel &d Marc Toussaint On classes of functions for
which no free lunch results hold. available at http: //arXiv.
Org/abs/physics/0102009,2001.

m o 1 1 M. Koeppen, D.H. Wolpea, and W. G. Macready. Remarks on
a recent paper on the ‘no free lunch’ theorem. IEEE T m . on
E~olUrioMry Computation, 5(3):295-2%, 2001.

a - IYl3 a - l Y l r + 1
%-(S> = (i)-l{e(r-j)(b - 1).$.r(b)}

i ’Byd$zwemeanthese tofY valuessampledat~.

Fig. 3. Row 1 indicates the Y values obtainable on a particular payoff function f for each of the l(q) = 5 possible opponent responses. Row 2 gives the
Y values actually observed during the training period. Row 3 gives the probabilities of 3 assuming a uniform probability density across the f which are
consistent with d,. The expected value of P(gld,) is 2.48/10.

where a = IYI - k , b = t(:) - k , e(z) = 1 iff z > 0, and
d ~ , ~ = 1 iff 9 = r. Since it is easily veri&ed that

Of the b remaining Y values the probability that the mini-
mum is j is

this probability is correctly normalized. The expected value of T k , r (g) = e (r - j) { (l - j + l) b - (l - B) h } + IYI
j is therefore

Evaluating this sum we End

- 1y1-1 (a + l)b+l- (a + 1 - lYlr)6+1
--

b + l d

where the falling power, ub, is defned by ab E a(. - 1)(a -
2) . . . (a - b + 1). For the case at hand where IY I = 10, I(:) =
5, and k = 3 we have a = 7 and b = 2. Since r = 4/10 the
expected value is lE(jld,) = &(83-42)/(3.72) = 52/21 M

2.48/10.

B. Determination of 7rk,, (3): non-distinct Y
In Figure 4 we present another example where t(g) = 5 ,

k = 3, and T = 4/10. In this case however, there are duplicate
Y values. The total number of functions consistent with the
data is (YIS(g)-k = (YIb. In this case it is easiest to begin
the analysis with the case j = T . The number of functions
having the minimum of the remaining b points equal to IYI
is 1. Similarly, the number of functions having a minimum
value of (IYI - 1) is 2’ - 1. 2’ counts the number of functions
where the b function values can assume one of Y or Y - 1.
The -1 accounts for the fact that 1 of these functions has a
minimum value of Y and not Y - 1. Generally, the number
of functions having a minimum value of r’ is (lYl - lYlr’+
l) b - (IYI - IYIT’)~. All r’ 2 T will result in the minimal
observed value r so that the total number of functions having
an observed minimum of T is

IYI

-y[(IYI - IYJT’+ qb- (IYI - JYlr’)b] = (IYI - lYlr + l) b
T’=T

Thus the probability of j = r is

7rk,r(J = T) = I Y J - ~ (J Y J - J Y J T + 1)’.

We turn now to determining the probabilities where 9 < r.

E(jld,) =r (l - r+ ly l) b +

b

= 2 (1- (+&))
r ’ = l / l Y l

where we have cancelled appropriate terms in the telescoping
sum. If we defne Sk(n) E Cyzl ik then we can evaluate the
last sum to End

E (j l d m) = IYI-b{sb(lYI) - s b (l y I - I y I r) } .
Though there is no closed form expression for S k (n) a
recursive expansion of sk(n) in terms of Sj(n) for j < k
is

The recursion is based upon &(n) = n.

b = 2 the expected value is &294/100 = 2.94/10.
In the concrete case above where IY[= 10, r = 4/10, and

C. Continuum Limit

expectation E(j(d,) given by the sum
In the limit where IYI -+ 00 we can approximate the

r - l / I Y l

E(jld,,) = 2 (1 - (7,’ - l/IYl))b = (1 - r’)b
r ’=l / IY I r’=O

by the integral

The prediction made by this approximation at (YI = 10,
T = 4, and b = 2 is 2.61/10 as opposed to the correct

11 * . r

I
I f (z, .I

dm at
p($l&) 19/100 17/100

I Y I 1/10 I 210 I 3/10 I 4/10 I 5/10 1 6/10 I 7/10 1 8/10 1 9/10 I 10/10 I
J * * **

* **
*

151’100 49/100 0 0 0 0 0 0

Fig. 4. Row 1 indicates the Y values obtainable on a particular payoff function f for each of the j(g) = 5 possible opponent responses. Row 2 gives the
Y values actually observed during the m i g period. Row 3 gives the probabilities of 9 assuming a uniform probability density across the f which are
consistent with a!,,,. Note that unlike Fig. 3 there are some duplicate Y values. The expected value of P(jla!,,,) is 2.94/10.

from U(0: 1) and transforming so that u = 1 - v ’ / ~ ; samples
from P (w) = mwrn-’ are obtained via w = v ’ / ~ .

TABLE ID
MULTIPLICITIES OCCURRING WHEN CONVERTING THE SUM OVER f TO A

SUM OVER THE ALLOWED VALUES OF j , , j 2 , kl, kz, 1, AND m.

result of 2.94/10. However, had IYI = 1000 and T = 400 the
accurate result is 261.65/1000 while the approximation gives
261.3/1000.

D. felfonnance Comparison
In this appendix we evaluate the fraction of functions for

which a1 performs better or equal to algorithm a2 where a1
and a2 are ddned as in Section VI.

The function O(perf,(f) - perf2(f)) is equal to 1 if

cdl + elcd2 + e2cdl& + ‘ E 1 d 1 + Ed2 + e32122

where c = (a (j 1 , k l) > lYI(g)), dl = (m=(j l , j2 ,1) =
j i) > d2 = (max(j l , j2 ,Z) = j z) , el = (&(j l ,k l) 2
min(jz ,k2)) , e2 = (min(j1,kl) 2 mi.(Z,m)), e3 =
(mi+, kz) 2 min(Z, m)). In the above Boolean expression
we have used the condensed notation a b 3 a Ab, a + b a V b,
and Z = -a. It is convenient to factor the Boolean expression

c(d1 + eld2 + e2dld2) 3- E(Eldl + d2 + e&&).

To give the hc t ion of functions where a1 performs better
than a2 this expression is to be summed over j l , j2, k l , k2,
1, and m with appropriate multiplicities. The multiplicities are
given in Table m.

as

In the continuum limit this sum becomes the integral

where P (k l) = (j - l) (l - k l) i - 2 , P (k 2) = (1-1)(1-k2)’-2,
P(E) = (1- 2)Zi-3, P(m) = (t- 1) (1 - and condition
c is modifed to min(j1, k l) > (9). Though this integral is dif-
Ecult to evaluate analytically, it is straightforward to evaluate
by Monte Carlo importance sampling of G l , j 2 , k l , k2,1,m)
using the respective probability distributions. Samples from
P(u) = m(l - u) ~ - ’ are obtained by sampling values

L .

